# Continuous Random Variable II

Aug 3, 2022

## Probability density function (PDF)

• A random variable if called continuous if there is a nonnegative function  $f_X$  called probability density function (PDF) of X such that

 $\mathbb{P}(X \in B) = \int_B f_X(x) dx$  for every subset  $B \subset \mathbb{R}$ .

• The probability that the value of X falls with in an interval is  $\mathbb{P}(a \le X \le b) = \int_{b}^{a} f_{X}(x) dx$ 

### Cumulative density function (CDF)

The CDF of a random variable X with PDF  $f_X$  (or PMF  $p_X$ ) is denoted as  $F_X$ 

$$\forall x,$$
  
 $F_X(x) = \mathbb{P}(X \le x) = \begin{cases} \sum_{k \le x} p_X(k) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^x f_X(t) dt & \text{if } X \text{ is continuous} \end{cases}$ 

#### Geometric and exponential CDFs

**Exponential PDF** 

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

**Exponential CDF** 

Geometric PMF

$$p_X(k) = (1-p)^{k-1}p$$

Geometric CDF

#### Geometric and exponential CDFs



#### Joint distribution: Joint PDF

- A joint density function for two continuous random variables X, Y is a function  $f : \mathbb{R}^2 \to \mathbb{R}$ , such that
  - f is nonnegative,  $f_{X,Y}(x,y) \ge 0, \forall x, y \in \mathbb{R}$
  - Total integral is 1,  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
- The joint distribution of two continuous random variables X, Y is given by, ∀a ≤ b, c ≤ d

$$\mathbb{P}(a \leq X \leq b, c \leq Y \leq d) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy .$$

#### Joint distribution: Marginals

• The marginal PDF  $f_X$  of X is given by

$$f_{X(x)} = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

• Similarly

$$f_{Y(x)} = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

#### Joint distribution: Joint CDFs

• If X, Y are two random variables associated with the same experiment, we define their joint CDF by  $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$ 

• The joint PDF of two continuous random variables X, Y is  $f_{X,Y}$ , then

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y) dx dy.$$

#### Independence

• Two random variables X, Y are independent if the event  $a \le X \le b$  and  $c \le Y \le d$  are independent for all  $a \le b, c \le d$ .  $\mathbb{P}(a \le X \le b, c \le Y \le d) = \mathbb{P}(a \le X \le b)\mathbb{P}(a \le X \le b)$ 

• The joint density of independent random variables X, Y is the product of the marginal densities

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

## Example 1. 2D uniform PDF

Romeo and Juliet have a date at a given time and each will arrive at the meeting place with a delay between 0 and 1 hour. Let X, Y denote the delays of R and J respectively. All pairs of delay (x, y) are equally likely. The first two arrive will wait 15 min and leave if the other hasn't arrived. What's the probability that they meet.

### Example 2.

 The joint PDF of random variable X and Y is a constant c on the set S in figure, and O outside, Find the value of c and the marginal PDFs of X and Y



## Normal random variable

(normal distribution, Gaussian distribution)

• A continuous random variable *X* is normal or Gaussian if the PDF is in the form

$$f_X(x) = \frac{1}{2\pi} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### Normal random variable

(normal distribution, Gaussian distribution)

• A continuous random variable  $X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $a, b \neq 0, Y = aX + b$ . Then  $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$ 

• Further if 
$$Y = \frac{X-\mu}{\sigma}$$
, then  $Y \sim \mathcal{N}(0,1)$ 

#### CDF of standard normal

• CDF of  $\mathcal{N}(0,1)$  standard normal is denote by  $\Phi$ 

$$\Phi(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Y \le y) = \frac{1}{2\pi} \int_{-\infty}^{y} e^{-\frac{t^2}{2}} dt$$

- CDF for  $X \sim \mathcal{N}(\mu, \sigma^2)$  calculation
  - 1. standardize X by defining a new normal r.v.  $Y = \frac{X-\mu}{\sigma}$ 2.  $\mathbb{P}(X \le x)$

#### Sum of i.i.d. Normal

• Let  $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1), X \perp Y$ . Let  $a, b \in \mathbb{R}$  be constant. Then  $Z = aX + bY \sim \mathcal{N}(0, a^2 + b^2)$ 

• A general case

#### Central Limit Theorem (CLT)

Let  $X_1, X_2, ..., X_n$  be a sequence of iid random variables with  $\mathbb{E}(X_i) = \mu, Var(X_i) = \sigma^2$ 

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$
$$\mathbb{E}(Z_n) = 0, Var(Z_n) = \frac{n\sigma^2}{\sigma^2 n} = 1$$

The CDF of  $Z_n$  converge to standard normal CDF

$$\lim_{n \to \infty} \mathbb{P}(Z_n \le z) = \Phi(z), \forall z$$

#### Normal approximation based on CLT

Let  $X_1, X_2, ..., X_n$  be a sequence of iid random variables with  $\mathbb{E}(X_i) = \mu$ ,  $Var(X_i) = \sigma^2$ . If *n* is large,  $\mathbb{P}(S_n \leq c)$  can be approximated by treating  $S_n$  as if it were normal:

- 1. Calculate the mean  $n\mu$  and the variance  $n\sigma^2$  of  $S_n$
- 2. calculate the normalization value  $z = \frac{c n\mu}{\sigma \sqrt{n}}$  (z-score)
- 3. Use approximation  $\mathbb{P}(S_n \leq c) \approx \Phi(z)$ where  $\Phi(z)$  is available from standard normal CDF table.

## Example 3. Polling

We want to find out the value p representing the fraction of people supporting candidate A in a city.

## Example 3. Polling

How many people we need to interview if we wish to estimate within accuracy of 0.01 with 95% probability.

## Conditioning

• Two random variables X, Y with join PDF  $f_{X,Y}$ . For any fixed y with  $f_{Y(y)} > 0$  the conditional PDF of X given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

## Conditioning

 $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$ 





## Approximation of binomial

- When p is small, n is large, binomial is best approximated by poisson distribution
- When n is large, p is not very small, binomial is best approximated by normal distribution
- Here is a good illustration: <u>https://math.stackexchange.com/questions/3278070/app</u> <u>roximation-of-binomial-distribution-poisson-vs-normal-distribution</u>

